Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biomed Res Int ; 2023: 1725638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36654869

RESUMO

Phoenix dactylifera is known for medicinal importance due to its antioxidant, antidiabetic, antidepressant, and anti-inflammatory properties. This study is aimed at evaluating the effect of P. dactylifera seeds to cure Alzheimer's disease (AD). AD was induced in the rats with streptozotocin + aluminium chloride followed by treatment of methanolic extract of P. dactylifera seeds. The blood glucose levels were determined at regular intervals, which showed a prominent decrease in the extracts treated group. Behavior tests, including the Elevated Plus Maze (EPM) test and Morris Water Maze (MWM) test, were used to evaluate memory patterns in rats. The results indicated that extract-treated rats significantly improved memory behavior compared to the diseased group. After dissection, the serum electrolytes, antioxidant enzymes, and choline esterase enzymes were measured in different organs. The serum parameters creatinine, urea, and bilirubin increased after extract treatment. Similarly, the level of antioxidant enzymes like peroxidases (POD), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactive substance (TBARS) in the extract-treated group showed improved results that were close to the normal control group. The enzyme (lipase, insulin, amylase, and acetylcholine) levels were found enhanced in extract groups as compared to diseased rats. High-performance liquid chromatography (HPLC) was used to determine the level of dopamine and serotonin neurotransmitters, which were increased significantly for P. dactylifera seeds with values of 0.18 µg/mg tissue and 0.56 µg/mg tissue, respectively. Overall, results showed that P. dactylifera seeds proved to be quite efficient in improving the memory and behavior of treated rats. The antioxidants and enzymes were also increased; therefore, it may be a potential candidate for treating AD.


Assuntos
Doença de Alzheimer , Phoeniceae , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Phoeniceae/química , Estreptozocina/farmacologia , Cloreto de Alumínio/farmacologia , Ratos Wistar , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glutationa/metabolismo , Estresse Oxidativo
2.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36355535

RESUMO

Type 2 diabetes mellitus (T2DM) is a potential risk factor for the development of COVID-19 and is associated with higher severity and mortality rates. T2DM patients are commonly treated with metformin monotherapy or metformin plus sitagliptin. In the present case-control, single-center cohort study, a total number of 112 T2DM patients suffering from COVID-19 and aged 44−62 years old were compared with 78 T2DM patients without COVID-19 and aged 42−56 years old. Both the patient group and the control group were allocated into four groups. Group A: T2DM patients with COVID-19 on metformin treatments plus standard therapy (n = 60); group B: T2DM patients with COVID-19 on metformin plus sitagliptin plus standard therapy (n = 52); group C: T2DM patients without COVID-19 on metformin treatments (n = 40); and group D: T2DM patients without COVID-19 on metformin plus sitagliptin (n = 38). The investigation duration was 2−3 weeks. Anthropometric measurements, serological and biochemical investigations, pulmonary radiological findings, and clinical outcomes were evaluated. Only 101 T2DM patients with COVID-19 continued the study, 71 (70.29%) with mild-moderate COVID-19 and 30 (29.7%) with severe COVID-19 were compared with 78 T2DM patients as a control. Inflammatory biomarkers (C reactive protein, ferritin, and procalcitonin), a lung injury biomarker (lactate dehydrogenase), and a coagulopathy biomarker (D-dimer) were elevated in severe COVID-19 patients compared with mild-moderate COVID-19 (p < 0.05) and T2DM patients (p < 0.05). However, metformin plus sitagliptin was more effective than metformin monotherapy in T2DM patients with COVID-19, as evidenced by the mitigation of oxidative stress, CT scan score, and clinical outcomes. The present study confirmed the protective effects of this combination against the development of COVID-19 severity, as most T2DM COVID-19 patients develop mild-moderate forms. Herein, the combination of metformin and sitagliptin may lead to more beneficial effects than metformin monotherapy.

3.
Front Med (Lausanne) ; 9: 988962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341243

RESUMO

Numerous microRNAs (miRNAs) have been found to have an aberrant expression in the peripheral blood or psoriasis patients' lesions. Psoriasis was shown to have the abnormal expression of microRNA-203 (miR-203). It is a skin-specific signal that governs cellular proliferation in a protein kinase C-dependent manner and is mostly generated by keratinocytes. This work evaluated the expression levels of the circulating miR-203 target genes SOCS3, SOCS6, TP63, TNF-, IL8, and IL24 in psoriasis patients. Using a relative quantitation PCR technique, we determined the expression levels of miR-203 and its target genes (SOCS3, SOCS6, TP63, TNF-, IL8, and IL24) in the plasma of 120 psoriatic patients and matched healthy controls. The disease characteristics of the patients were then correlated with the expression results. We also conducted numerous enrichment analyses for the diseases, functions, and pathways connected to the under-researched biomarkers. Compared to healthy controls, psoriatic patients had significantly increased levels of miR-203 expression; 7.1 (4.4-9.9). In contrast, psoriatic patients had significantly lower expression of all the examined genes compared to healthy controls. Regarding all the study biomarkers, the receiver operating characteristic (ROC) curve analysis demonstrated significant sensitivity and specificity for differentiating between psoriatic patients and healthy controls. According to the results of the disease matching score generated by miR-203 and its target genes, psoriasis was ranked first with a score of 4.45. The third-place finisher with a value of 3.98, it also demonstrated that miR-203 and its target genes are connected to various skin disorders. Our results show that miR-203 contributes to psoriasis pathogenesis not only locally in skin lesions but also in circulation, indicating that it may contribute to the systemic symptoms of the illness. MiR-203 overexpression in psoriasis suggests that miR-203 may be involved in an anti-inflammatory response because it targets both SOCS gene family members and pro-inflammatory cytokines.

4.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235300

RESUMO

The current study focused on the laboratory approach in conjunction with computational methods for the synthesis and bioactivity assessment of unique 2-tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines (2a-2k). Processes included cyclizing 1-aroyl-3-arylthioureas with propan-2-one in the presence of trimethylamine and bromine. By using spectroscopic techniques and elemental analyses, structures were elucidated. To assess the electronic properties, density functional theory (DFT) calculations were made, while binding interactions of synthesized derivatives were studied by the molecular docking tool. Promising results were found during the evaluation of bioactivity of synthesized compounds against alkaline phosphatase. The drug likeliness score, an indicator used for any chemical entity posing as a drug, was within acceptable limits. The data suggested that most of the derivatives were potent inhibitors of alkaline phosphatase, which in turn may act as lead molecules to synthesize derivatives having desired pharmacological profiles for the treatment of specific diseases associated with abnormal levels of ALPs.


Assuntos
Fosfatase Alcalina , Bromo , Fosfatase Alcalina/metabolismo , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
5.
Toxics ; 10(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36006156

RESUMO

Dichlorvos (2,3-dichlorovinyl dimethyl phosphate or DDVP), is a popular organophosphate (OP) with several domestic, industrial, and agricultural uses and applications in developing countries [...].

6.
Molecules ; 27(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807390

RESUMO

Voltage-gated Na+ (NaV) channels are significant therapeutic targets for the treatment of cardiac and neurological disorders, thus promoting the search for novel NaV channel ligands. With the objective of discovering new blockers of NaV channel ligands, we screened an In-House vegetal alkaloid library using fluorescence cell-based assays. We screened 62 isoquinoline alkaloids (IA) for their ability to decrease the FRET signal of voltage sensor probes (VSP), which were induced by the activation of NaV channels with batrachotoxin (BTX) in GH3b6 cells. This led to the selection of five IA: liriodenine, oxostephanine, thalmiculine, protopine, and bebeerine, inhibiting the BTX-induced VSP signal with micromolar IC50. These five alkaloids were then assayed using the Na+ fluorescent probe ANG-2 and the patch-clamp technique. Only oxostephanine and liriodenine were able to inhibit the BTX-induced ANG-2 signal in HEK293-hNaV1.3 cells. Indeed, liriodenine and oxostephanine decreased the effects of BTX on Na+ currents elicited by the hNaV1.3 channel, suggesting that conformation change induced by BTX binding could induce a bias in fluorescent assays. However, among the five IA selected in the VSP assay, only bebeerine exhibited strong inhibitory effects against Na+ currents elicited by the hNav1.2 and hNav1.6 channels, with IC50 values below 10 µM. So far, bebeerine is the first BBIQ to have been reported to block NaV channels, with promising therapeutical applications.


Assuntos
Alcaloides , Corantes Fluorescentes , Alcaloides/farmacologia , Batraquiotoxinas/metabolismo , Batraquiotoxinas/farmacologia , Viés , Células HEK293 , Humanos , Isoquinolinas/farmacologia , Ligantes , Sódio/metabolismo
7.
Pathogens ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36678400

RESUMO

The present context is a pioneer attempt to verify the ability of copepod, Lernanthropus kroyeri (L. kroyeri), to uptake and accumulate heavy metals. We primarily assess the prevalence of the parasite in various seasons and its clinical signs, as well as post-mortem changes in sea bass (Moron labrax). The morphological features of the parasite using a light microscope, the bioaccumulation of heavy metals in the tissues of both L. kroyeri and M. labrax (gills, muscles) using Flame Atomic Absorption Spectrometry, and the histopathological alterations were monitored. Fish (n = 200) were obtained from Ezbet Elborg and examined for the parasite, L. kroyeri. The results revealed that the total infection was recorded at 86%. The infested fish exhibited excessive mucous and ulceration at the site of attachment. The post-mortem lesion in the gills revealed a marbling appearance with destructed filaments. Various heavy metals (Zn, Co, Cu, and Cd) were detected in the tissues of L. kroyeri and M. labrax and, surprisingly, L. kroyeri had the ability to uptake and accumulate a high amount of Zn in its tissues. Infested fish accumulated a lower concentration of Zn in their tissue compared with the non-infested ones. Within the host tissue, the accumulation of Zn was higher in the gills compared with the muscles. The histopathological findings demonstrated scattered parasitic elements with the destruction of the gill lamellae. Taken together, we highlight the potential role of L. kroyeri to eliminate Zn and it can be utilized as a bio-indicator for metal monitoring studies for sustaining aquaculture.

8.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502162

RESUMO

Sepsis in the young population, which is particularly at risk, is rarely studied. O-GlcNAcylation is a post-translational modification involved in cell survival, stress response and metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysaccharide injection (E. Coli O111:B4, 20 mg·kg-1) and compared to control rats (NaCl 0.9%). One hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy (NaCl 0.9%, 10 mL·kg-1) ± NButGT (10 mg·kg-1) to increase O-GlcNAcylation levels. Physiological parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT, contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimulation improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are mainly involved in cellular metabolism.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilglucosamina/metabolismo , Processamento de Proteína Pós-Traducional , Choque Séptico/metabolismo , Acetilação , Animais , Hidratação/métodos , Lipopolissacarídeos/toxicidade , Ratos , Choque Séptico/etiologia , Choque Séptico/terapia
9.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466650

RESUMO

The use of animal models in fundamental or pre-clinical research remains an absolute requirement for understanding human pathologies and developing new drugs. In order to transpose these results into clinical practice, many parameters must be taken into account to limit bias. Attention has recently been focused on the sex, age or even strain of each animal, but the impact of diet has been largely neglected. Soy, which is commonly used in the diet in varying quantities can affect their physiology. In order to assess whether the presence of soy can impact the obtained results, we studied the impact of a soy-based diet versus a soy-free diet, on diastolic function in a rat model based on transgenic overexpression of the ß3-adrenergic receptors in the endothelium and characterized by the appearance of diastolic dysfunction with age. Our results show that the onset of diastolic dysfunction is only observed in transgenic male rats fed with a soy-free diet in the long term. Our study highlights the importance of the diet's choice in the study design process, especially regarding the proportion of soy, to correctly interpret the outcome as low-cost diets are more likely to be highly concentrated in soy.


Assuntos
Ração Animal , Diástole , Ventrículos do Coração/fisiopatologia , Fitoestrógenos , Ração Animal/análise , Animais , Dieta , Modelos Animais de Doenças , Feminino , Ventrículos do Coração/metabolismo , Humanos , Masculino , Fitoestrógenos/análise , Fitoestrógenos/metabolismo , Ratos , Ratos Transgênicos , Receptores Adrenérgicos beta 3/genética , /metabolismo
10.
Sci Rep ; 10(1): 9835, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555258

RESUMO

Sinus node (SAN) dysfunction (SND) manifests as low heart rate (HR) and is often accompanied by atrial tachycardia or atrioventricular (AV) block. The only currently available therapy for chronic SND is the implantation of an electronic pacemaker. Because of the growing burden of SND in the population, new pharmacological therapies of chronic SND and heart block are desirable. We developed a collection of genetically modified mouse strains recapitulating human primary SND associated with different degrees of AV block. These mice were generated with genetic ablation of L-type Cav1.3 (Cav1.3-/-), T-type Cav3.1 (Cav3.1-/-), or both (Cav1.3-/-/Cav3.1-/-). We also studied mice haplo-insufficient for the Na+ channel Nav1.5 (Nav1.5+/) and mice in which the cAMP-dependent regulation of hyperpolarization-activated f-(HCN4) channels has been abolished (HCN4-CNBD). We analysed, by telemetric ECG recording, whether pharmacological inhibition of the G-protein-activated K+ current (IKACh) by the peptide tertiapin-Q could improve HR and AV conduction in these mouse strains. Tertiapin-Q significantly improved the HR of Cav1.3-/- (19%), Cav1.3-/-/Cav3.1-/- (23%) and HCN4-CNBD (14%) mice. Tertiapin-Q also improved cardiac conduction of Nav1.5+/- mice by 24%. Our data suggest that the development of pharmacological IKACh inhibitors for the management of SND and conduction disease is a viable approach.


Assuntos
Venenos de Abelha/farmacologia , Bradicardia/fisiopatologia , Proteínas de Ligação ao GTP/metabolismo , Sistema de Condução Cardíaco/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Animais , Bradicardia/metabolismo , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Nó Sinoatrial/fisiopatologia
11.
Oxid Med Cell Longev ; 2020: 6681073, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425215

RESUMO

Septic shock is a systemic inflammatory response syndrome associated with circulatory failure leading to organ failure with a 40% mortality rate. Early diagnosis and prognosis of septic shock are necessary for specific and timely treatment. However, no predictive biomarker is available. In recent years, improvements in proteomics-based mass spectrometry have improved the detection of such biomarkers. This approach can be performed on different samples such as tissue or biological fluids. Working directly from human samples is complicated owing to interindividual variability. Indeed, patients are admitted at different stages of disease development and with signs of varying severity from one patient to another. All of these elements interfere with the identification of early, sensitive, and specific septic shock biomarkers. For these reasons, animal models of sepsis, although imperfect, are used to control the kinetics of the development of the pathology and to standardise experimentation, facilitating the identification of potential biomarkers. These elements underline the importance of the choice of animal model used and the sample to be studied during preclinical studies. The aim of this review is to discuss the relevance of different approaches to enable the identification of biomarkers that could indirectly be relevant to the clinical setting.


Assuntos
Biomarcadores/sangue , Biomarcadores/urina , Espectrometria de Massas/métodos , Sepse/sangue , Sepse/urina , Choque Séptico/sangue , Choque Séptico/urina , Animais , Modelos Animais de Doenças , Exossomos/metabolismo , Hemodinâmica , Humanos , Inflamação , Camundongos , Peritonite/sangue , Peritonite/urina , Proteômica/métodos , Ratos , Reprodutibilidade dos Testes , Especificidade da Espécie
12.
J. venom. anim. toxins incl. trop. dis ; 24: 1-11, 2018. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484741

RESUMO

Background Sperm contains a wealth of cell surface receptors and ion channels that are required for most of its basic functions such as motility and acrosome reaction. Conversely, animal venoms are enriched in bioactive compounds that primarily target those ion channels and cell surface receptors. We hypothesized, therefore, that animal venoms should be rich enough in sperm-modulating compounds for a drug discovery program. Our objective was to demonstrate this fact by using a sperm-based phenotypic screening to identify positive modulators from the venom of Walterinnesia aegyptia. Methods Herein, as proof of concept that venoms contain interesting compounds for sperm physiology, we fractionated Walterinnesia aegyptia snake venom by RP-HPLC and screened for bioactive fractions capable of accelerating mouse sperm motility (primary screening). Next, we purified each compound from the positive fraction by cation exchange and identified the bioactive peptide by secondary screening. The peptide sequence was established by Edman sequencing of the reduced/alkylated compound combined to LC-ESI-QTOF MS/MS analyses of reduced/alkylated fragment peptides following trypsin or V8 protease digestion. Results Using this two-step purification protocol combined to cell phenotypic screening, we identified a new toxin of 7329.38 Da (actiflagelin) that activates sperm motility in vitro from OF1 male mice. Actiflagelin is 63 amino acids in length and contains five disulfide bridges along the proposed pattern of disulfide connectivity C1-C5, C2-C3, C4- C6, C7-C8 and C9-C10. Modeling of its structure suggests that it belongs to the family of three finger toxins with a noticeable homology with bucandin, a peptide from Bungarus candidus venom. Conclusions This report demonstrates the feasibility of identifying profertility compounds that may be of therapeutic potential for infertility cases where motility is an issue.


Assuntos
Humanos , Animais , Elapidae , Fármacos para a Fertilidade Masculina , Motilidade dos Espermatozoides , Sêmen , Venenos Elapídicos/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Reações Bioquímicas
13.
Artigo em Inglês | LILACS | ID: biblio-894172

RESUMO

Sperm contains a wealth of cell surface receptors and ion channels that are required for most of its basic functions such as motility and acrosome reaction. Conversely, animal venoms are enriched in bioactive compounds that primarily target those ion channels and cell surface receptors. We hypothesized, therefore, that animal venoms should be rich enough in sperm-modulating compounds for a drug discovery program. Our objective was to demonstrate this fact by using a sperm-based phenotypic screening to identify positive modulators from the venom of Walterinnesia aegyptia. Methods Herein, as proof of concept that venoms contain interesting compounds for sperm physiology, we fractionated Walterinnesia aegyptia snake venom by RP-HPLC and screened for bioactive fractions capable of accelerating mouse sperm motility (primary screening). Next, we purified each compound from the positive fraction by cation exchange and identified the bioactive peptide by secondary screening. The peptide sequence was established by Edman sequencing of the reduced/alkylated compound combined to LC-ESI-QTOF MS/MS analyses of reduced/alkylated fragment peptides following trypsin or V8 protease digestion. Results Using this two-step purification protocol combined to cell phenotypic screening, we identified a new toxin of 7329.38 Da (actiflagelin) that activates sperm motility in vitro from OF1 male mice. Actiflagelin is 63 amino acids in length and contains five disulfide bridges along the proposed pattern of disulfide connectivity C1-C5, C2-C3, C4- C6, C7-C8 and C9-C10. Modeling of its structure suggests that it belongs to the family of three finger toxins with a noticeable homology with bucandin, a peptide from Bungarus candidus venom. Conclusions This report demonstrates the feasibility of identifying profertility compounds that may be of therapeutic potential for infertility cases where motility is an issue.(AU)


Assuntos
Animais , Masculino , Ratos , Motilidade dos Espermatozoides , Espermatozoides/química , Venenos Elapídicos/isolamento & purificação , Venenos Elapídicos/uso terapêutico , Fosfolipases A2 , Acetilcolinesterase , Espectrometria de Massas em Tandem/métodos , Fracionamento Químico/métodos , Camundongos
14.
Biochem Biophys Res Commun ; 391(1): 419-25, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19914216

RESUMO

One of the major obstacles which are opposed to the success of anticancer treatment is the cell resistance that generally develops after administration of commonly used drugs. In this study, we try to overcome the tumour cell resistance of doxorubicin (Dox) by developing a cell-penetrating peptide (CPP)-anticancer drug conjugate in aim to enhance its intracellular delivery and that its therapeutic effects. For this purpose, two cell-penetrating peptides, penetratin (pene) and tat, derived from the HIV-1 TAT protein, were chemically conjugated to Dox. The cytotoxicity, intracellular distribution and uptake were accessed in CHO cells (Chinese Hamster Ovarian carcinoma cells), HUVEC (Human Umbilical Vein Endothelial Cells), differentiated NG108.15 neuronal cell and breast cancer cells MCF7drug-sensitive or MDA-MB 231 drug-resistant cell lines. The conjugates showed different cell killing activity and intracellular distribution pattern by comparison to Dox as assessed respectively by MTT-based colorimetric cellular cytotoxicity assay, confocal fluorescence microscopy and FACS analysis. After treatment with 3 microM with Dox-CPPs for 2h, pene increase the Dox cytotoxicity by 7.19-fold in CHO cells, by 11.53-fold in HUVEC cells and by 4.87-fold in MDA-MB 231 cells. However, cytotoxicity was decreased in NG108.15 cells and MCF7. Our CPPs-Dox conjugate proves the validity of CPPs for the cytoplasmic delivery of therapeutically useful molecules and also a valuable strategy to overcome drug resistance.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Proteínas de Transporte/metabolismo , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Fragmentos de Peptídeos/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Antibióticos Antineoplásicos/química , Transporte Biológico , Células CHO , Proteínas de Transporte/química , Linhagem Celular Tumoral , Peptídeos Penetradores de Células , Cricetinae , Cricetulus , Doxorrubicina/química , Humanos , Fragmentos de Peptídeos/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...